`
阿尔萨斯
  • 浏览: 4167806 次
社区版块
存档分类
最新评论

《C++0x漫谈》系列之:右值引用(或“move语意与完美转发”)(上)

 
阅读更多
<iframe align="center" marginwidth="0" marginheight="0" src="http://www.zealware.com/csdnblog.html" frameborder="0" width="728" scrolling="no" height="90"></iframe>

C++0x漫谈》系列之:右值引用

或“move语意与完美转发”(上)

By 刘未鹏(pongba)

刘言|C++的罗浮宫(http://blog.csdn.net/pongba)

C++0x漫谈》系列导言

这个系列其实早就想写了,断断续续关注C++0x也大约有两年余了,其间看着各个重要proposals一路review过来:rvalue-referencesconceptsmemory-modelvariadic-templatestemplate-aliasesauto/decltypeGCinitializer-lists…

总的来说C++09C++98相比的变化是极其重大的。这个变化体现在三个方面,一个是形式上的变化,即在编码形式层面的支持,也就是对应我们所谓的编程范式(paradigm)C++09不会引入新的编程范式,但在对泛型编程(GP)这个范式的支持上会得到质的提高:conceptsvariadic-templatesauto/decltypetemplate-aliasesinitializer-lists皆属于这类特性。另一个是内在的变化,即并非代码组织表达方面的,memory-modelGC属于这一类。最后一个是既有形式又有内在的,r-value references属于这类。

这个系列如果能够写下去,会陆续将C++09的新特性介绍出来。鉴于已经有许多牛人写了很多很好的tutor这里这里,还有C++标准主页上的一些introductiveproposals,如这里,此外C++社群中老当益壮的Lawrence Crowl也在google做了非常漂亮的talk)。所以我就不作重复劳动了:),我会尽量从一个宏观的层面,如特性引入的动机,特性引入过程中经历的修改,特性本身的最具代表性的使用场景,特性对编程范式的影响等方面进行介绍。至于细节,大家可以见每篇介绍末尾的延伸阅读。

右值引用导言

右值引用(及其支持的Move语意和完美转发)是C++0x将要加入的最重大语言特性之一,这点从该特性的提案在C++ - State of the Evolution列表上高居榜首也可以看得出来。从实践角度讲,它能够完美解决C++中长久以来为人所诟病的临时对象效率问题。从语言本身讲,它健全了C++中的引用类型在左值右值方面的缺陷。从库设计者的角度讲,它给库设计者又带来了一把利器。从库使用者的角度讲,不动一兵一卒便可以获得“免费的”效率提升

Move语意

返回值效率问题——返回值优化((N)RVO)——mojo设施——workaround——问题定义——Move语意——语言支持

大猴子Howard Hinnant写了一篇挺棒的tutoriala.k.a. 提案N2027),此外最初的关于rvalue-reference的若干篇提案的可读性也相当强。因此要想了解rvalue-reference的话,或者去看C++标准委员会网站上的系列提案(见文章末尾的参考文献)。或者阅读本文。

源起

《大史记》总看过吧?

故事,素介个样子滴一天,小嗖风风的吹着,在一个伸手不见黑夜的五指(哎哟,谁人扔滴板砖?!%$@

我用const引用来接受参数,却把临时变量一并吞掉了。我用非const引用来接受参数,却把const左值落下了。于是乎,我就在标准的每个角落寻找解决方案,我靠!我被8.5.3打败了!

设想这样一段代码(既然大同小异,就直接从Andrei那篇著名的文章里面拿来了):

std::vector<int> v = readFile();<p></p></int>

readFile()的定义是这样的:

std::vector<int> readFile()<p></p></int>

{

std::vector<int> retv;<p></p></int>

… // fill retv

return retv;

}

这段代码低效的地方在于那个返回的临时对象。一整个vector得被拷贝一遍,仅仅是为了传递其中的一组int,当v被构造完毕之后,这个临时对象便烟消云散。

这完全是公然的浪费!

更糟糕的是,原则上讲,这里有两份浪费。一,retvretvreadFile()结束之后便烟消云散)。二,返回的临时对象(返回的临时变量在v拷贝构造完毕之后也随即香消玉殒)。不过呢,对于上面的简单代码来说,大部分编译器都已经能够做到优化掉这两个对象,直接把那个retv创建到接受返回值的对象,即v中去。

实际上,临时对象的效率问题一直是C++中的一个被广为诟病的问题。这个问题是如此的著名,以至于标准不惜牺牲原本简洁的拷贝语意,在标准的12.8节悍然下诏允许优化掉在函数返回过程中产生的拷贝(即便那个拷贝构造函数有副作用也在所不惜!)。这就是所谓的“Copy Elision”。

为什么(N)RVO((Named) Return Value Optimization)几乎形同虚设

还是按照Andrei的说法,只要readFile()改成这样:

… readFile()

{

if(/* err condition */) return std::vector<int>();<p></p></int>

if(/* yet another err condition */) return std::vector<int>(1, 0);<p></p></int>

std::vector<int> retv;<p></p></int>

… // fill retv

return retv;

}

出现这种情况,编译器一般都会乖乖放弃优化。

但对编译器来说这还不是最郁闷的一种情况,最郁闷的是:

std::vector<int> v;<p></p></int>

v = readFile(); // assignment, not copy construction

这下由拷贝构造,变成了拷贝赋值。眼睛一眨,老母鸡变鸭。编译器只能缴械投降。因为标准只允许在拷贝构造的情况下进行(N)RVO

为什么库方案也不是生意经

C++鬼才Andrei Alexandrescu以对C++标准的深度挖掘和利用著名,早在03年的时候(当时所谓的临时变量效率问题已经在新闻组上闹了好一阵子了,相关的语言级别的解决方案也已经在029月份粉墨登场)就在现有标准(C++98)下硬是折腾出了一个能100%解决问题的方案来。

Andrei把这个框架叫做mojo,就像一层爽身粉一样,把它往现有类上面一洒,嘿嘿猜怎么着,不,不是“痱子去无踪”:P,是该类型的临时对象效率问题就迎刃而解了!

Mojo的唯一的问题就是使用方法过于复杂。这个复杂度,很大程度上来源于标准中的一个措辞问题(C++标准就是这样,鬼知道哪个角落的一句话能够带出一个brilliant的解决方案来,同时,鬼知道哪个角落的一句话能够抹杀一个原本简洁的解决方案)。这个问题就是我前面提到过的8.5.3问题,目前已经由core language issue 391解决。

对于库方案来说,解决问题固然是首要的。但一个侵入性的,外带使用复杂性的方案必然是走不远的。因此虽然大家都不否认mojo是一个天才的方案,但实际使用中难免举步维艰。这也是为什么mojo并没有被工业化的原因。

为什么改用引用传参也等于痴人说梦

void readFile(vector<int>&amp; v){ … // fill v }<p></p></int>

这当然可以。

但是如果遇到操作符重载呢?

string operator+(string const& s1, string const& s2);

而且,就算是对于readFile,原先的返回vector的版本支持

BOOST_FOREACH(int i, readFile()){

… // do sth. with i

}

改成引用传参后,原本优雅的形式被破坏了,为了进行以上操作不得不引入一个新的名字,这个名字的存在只是为了应付被破坏的形式,一旦foreach操作结束它短暂的生命也随之结束:

vector<int> v;<p></p></int>

readFile(v);

BOOST_FOREACH(int I, v){

}

// v becomes useless here

还有什么问题吗?自己去发现吧。总之,利用引用传参是一个解决方案,但其能力有限,而且,其自身也会带来一些其它问题。终究不是一个优雅的办法。

问题是什么

《你的灯亮着吗?》里面漂亮地阐述了定义“问题是什么”的重要性。对于我们面临的临时对象的效率问题,这个问题同样重要。

简而言之,问题可以描述为:

C++没有区分copymove语意。

什么是move语意?记得auto_ptr吗?auto_ptr在“拷贝”的时候其实并非严格意义上的拷贝。“拷贝”是要保留源对象不变,并基于它复制出一个新的对象出来。但auto_ptr的“拷贝”却会将源对象“掏空”,只留一个空壳——一次资源所有权的转移。

这就是move

Move语意的作用——效率优化

举个具体的例子,std::string的拷贝构造函数会做两件事情:一,根据源std::string对象的大小分配一段大小适当的缓冲区。二,将源std::string中的字符串拷贝过来。

// just for illustrating the idea, not the actual implementation

string::string(const string& o)

{

this->buffer_ = new buffer[o.length() + 1];

copy(o.begin(), o.end(), buffer_);

}

但是假设我们知道o是一个临时对象(比如是一个函数的返回值),即o不会再被其它地方用到,o的生命期会在它所处的full expression的结尾结束的话,我们便可以将o里面的资源偷过来:

string::string(temporary string& o)

{

// since o is a temporary, we can safely steal its resources without causing any problem

this->buffer_ = o.buffer_;

o.buffer_ = 0;

}

这里的temporary是一个捏造的关键字,其作用是使该构造函数区分出临时对象(即只有当参数是一个临时的string对象时,该构造函数才被调用)。

想想看,如果存在这样一个move constructor(搬移式构造函数)的话,所有源对象为临时对象的拷贝构造行为都可以简化为搬移式(move)构造。对于上面的string例子来说,movecopy construction之间的效率差是节省了一次O(n)的分配操作,一次O(n)的拷贝操作,一次O(1)的析构操作(被拷贝的那个临时对象的析构)。这里的效率提升是显而易见且显著的。

最后,要实现这一点,只需要我们具有判断左值右值的能力(比如前面设想的那个temporary关键字),从而针对源对象为临时对象的情况进行“偷”资源的行动。

Move语意的作用——使能(enabling)

再举一个例子,std::fstreamfstream是不可拷贝的(实际上,所有的标准流对象都是不可拷贝的),因而我们只能通过引用来访问一开始建立的那个流对象。但是,这种办法有一个问题,如果我们要从一个函数中返回一个流对象出来就不行了:

// how do we make this happen?

std::fstream createStream()
{ … }

当然,你可以用auto_ptr来解决这个问题,但这就使代码非常笨拙且难以维护。

但如果fstreammoveable的,以上代码就是可行的了。所谓“moveable”即是指(当源对象是临时对象时)在对象拷贝语法之下进行的实际动作是像auto_ptr那样的资源所有权转移:源对象被掏空,所有资源都被转移到目标对象中——好比一次搬家(move)。move操作之后,源对象虽然还有名有姓地存在着,但实际上其“实质”(内部拥有的资源)已经消失了,或者说,源对象从语意上已经消失了。

对于moveable但并非copyablefstream对象来说,当发生一次move时(比如在上面的代码中,当一个局部的fstream对象被movecreateStream()函数时),不会出现同一对象的两个副本,取而代之的是,move的源对象的身份(Identity)消失了,这个身份由返回的临时fstream对象重新持有。也就是说,fstream的唯一性(不可拷贝性——non-copyable)得到了尊重。

你可能会问,那么被搬空了的那个源对象如果再被使用的话岂不是会引发问题?没错。这就是为什么我们应该仅当需要且可以去move一个对象的时候去move它,比如在函数的最后一行(return)语句中将一个局部的vector对象move出来(return std::move(v)),由于这是最后一行语句,所以后面v不可能再被用到,对它来说所剩下的操作就是析构,因此被掏空从语意上是完全恰当的。

最初的例子——完美解决方案

在先前的那个例子中

vector<int> v = readFile();<p></p></int>

有了move语意的话,readFile就可以简单的改成:

std::vector<int> readFile()<p></p></int>

{

std::vector<int> retv;<p></p></int>

… // fill retv

return std::move(retv); // move retv out

}

std::move以后再介绍。目前你只要知道,std::move就可以把retv掏空,即搬移出去,而搬家的最终目的地是v。这样的话,从内存分配的角度讲,只有retv中进行的内存分配,在从retv到返回的临时对象,再从后者到目的地v的“move”过程中,没有任何的内存分配(我是指vector内的缓冲区分配),取而代之的是,先是retv内的缓冲区被“转移”到返回值临时对象中,然后再从临时对象中转移到v中。相比于以前的两次拷贝而言,两次move操作节省了多少工作量呢?节省了两次new操作两次delete操作,还有两次O(n)的拷贝操作,这些操作整体的代价正比于retv这个vector的大小。难怪人们说临时对象效率问题是C++的肿瘤(wart)之一,难怪C++标准都要不惜代价允许(N)RVO

如何支持move语意

根据前面的介绍,你想必已经知道。实现move语意的最关键环节在于能够在编译期区分左值右值(也就是说识别出临时对象)。

现在,回忆一下,在文章的开头我曾经提到:

我用const引用来接受参数,却把临时变量一并吞掉了。我用非const引用来接受参数,却把const左值落下了。于是乎,我就在标准的每个角落寻找解决方案,我靠!我被8.5.3打败了!

为什么这么说?

现行标准(C++03)下的方案

要想区分左值右值,只有通过重载:

void foo(X const&);

void foo(X&);

这样的重载显然是行不通的。因为X const&会把non-const临时对象一并吞掉。

这种做法的问题在于。X&是一个non-const引用,它只能接受non-const左值。然而,C++里面的值一共有四种组合:

const non-const

lvalue

rvalue

常量性(const-ness)与左值性(lvalue-ness)是正交的。

non-const引用只能绑定到其中的一个组合,即non-const lvalue。还剩下const左值,const右值,以及我们最关心的——non-const右值。而只有最后一种——non-const右值——才是可以move

剩下的问题便是如何设计重载函数来搞定const左值和const右值。使得最后只留下non-const右值。

所幸的是,我们可以借助强大的模板参数推导机制:

// catch non-const lvalues

void foo(X&);

// catch const lvalues and const rvalues

template<typename t><p></p></typename>

void foo(T&, enable_if_same<t const x>::type* = 0);<p></p></t>

void foo( /* what goes here? */);

注意,第二个重载负责接受const左值和const右值。经过第一第二个foo重载之后剩下来的便是non-const rvalue了。

问题是,我们怎么捕获这些non-const rvalue呢?根据C++03const-const rvalue只能绑定到const引用。但如果我们用const引用的话,就会越俎代庖把const左右值一并接受了(因为在模板函数(第二个重载)和非模板函数(第三个重载)之间编译器总是会偏好非模板)。

那除了用const引用,难道还有什么办法来接受一个non-const rvalue吗?

有。

假设你的类型为X,那么只要在X里面加入一点料:

struct ref_x

{

ref_x(X* p) : p_(p) {}

X* p_;

};

struct X

{

// original stuff

// added stuff, for move semantic

operator ref_x()

{

return ref_x(this);

}

};

这样,我们的第三个重载函数便可以写成:

void foo(ref_x rx); // accept non-const temporaries only!

Bang! 我们成功地在C++03下识别出了moveablenon-const临时对象。不过前提是必须得在moveable的类型里加入一些东西。这也正是该方案的最大弊病——它是侵入式的(姑且不说它利用了语言的阴暗角落,并且带来了很大的编码复杂度)。

C++09的方案

实际上,刚才讲的这个利用重载的方案做成库便是Andreimojo框架。mojo框架固然精巧,但复杂性太大,使用成本太高,不够优雅直观。所以语言级别的支持看来是必然选择(后面你还会看到,为了支持move语意而引入的新的语言特性同时还支持了另一个广泛的问题——完美转发)。

C++03之所以让人费神就是因为它没有一个引用类型来绑定到右值,而是用const左值引用来替代,事实证明这个权宜之计并不是长远之道,时隔10年,终归还是要健全引用的左右值语意。

C++09加入一个新的引用类型——右值引用。右值引用的特点是优先绑定到右值。其语法是&&(注意,不读作“引用的引用”,读作“右值引用”)。有了右值引用,我们前面的方案便可以简单的修改为:

void foo(X const& x);

void foo(X&& x);

这样一来,左值以及const右值都被绑定到了第一个重载版本。剩下的non-const右值被绑定到第二个重载版本。

对于你的moveable的类型X,则是这样:

struct X

{

X();

X(X const& o); // copy constructor

X(X&& o); // move constructor

};

X source();

X x = source(); // #1

#1处,调用的将会是X::X(X&& o),即所谓的move constructor,因为source()返回的是一个临时对象(non-const右值),重载决议会选中move constructor

扩展阅读

由于本文的意图是一个指南,因此关于move语意的其它林林种种的细节可参见下面列的参考文献。

[1] Move Constructor

[2] A Proposal to Add Move Semantics Support to the C++ Language (a.k.a. N1377)

[3] Yasli::vector is on the Move

[4] Clarification of Initialization of Class Objects by rvalues (a.k.a. N1610)

[5] A Brief Intro to rvalue reference (a.k.a. N2027)

[6] A Proposal to Add Rvalue Reference to the C++ Language - Proposed Wording (a.k.a. N2118)

[7] State of C++ Evolution (Toronto 2007 Meeting) (a.k.a. 2291)

下篇预告

下篇是关于完美转发的。

目录(展开C++0x漫谈》系列文章)




分享到:
评论

相关推荐

    C++11右值引用和std::move语句实例解析(推荐)

    右值引用(及其支持的Move语意和完美转发)是C++0x将要加入的最重大语言特性之一。从实践角度讲,它能够完美解决C++中长久以来为人所诟病的临时对象效率问题。从语言本身讲,它健全了C++中的引用类型在左值右值方面...

    右值引用、移动语义和完美转发1

    // a是左值 getTemp()的返回值是右值(临时变量)左值引用、右值引用c++98中的引用很常见了,就是给变量取了个别名,在c++11中,因为增加了右值引

    C++11右值引用和转发型引用教程详解

    为了解决移动语义及完美转发问题,C++11标准引入了右值引用(rvalue reference)这一重要的新概念。右值引用采用T&&这一语法形式,比传统的引用T&(如今被称作左值引用 lvalue reference)多一个&。 如果把经由T&&...

    C++11 标准新特性_ 右值引用与转移语义

    C++11的新特性。尤其是lamda表达式,使得C++灵活了很多

    C++11:右值引用-附件资源

    C++11:右值引用-附件资源

    关于c++的 右值 右值引用 move

    第一次接触c++move操作就懵逼了,一直想探个究竟,但是右值以及右值引用思考了好长时间,就是不得要领,今天终于有所收获,写下第一篇博客,一方面为了帮助一些刚入门的朋友,另一方面也是帮助自己今后复习。...

    浅析C++11中的右值引用、转移语义和完美转发

    对于c++11来说移动语义是一个重要的概念,一直以来我对这个概念都似懂非懂。最近翻翻资料感觉突然开窍,因此顺便记录下C++11中的右值引用、转移语义和完美转发,方便大家查阅参考。

    深入解读C++中的右值引用

    右值引用(及其支持的Move语意和完美转发)是C++0x将要加入的最重大语言特性之一,这点从该特性的提案在C++ – State of the Evolution列表上高居榜首也可以看得出来。 从实践角度讲,它能够完美解决C++中长久以来...

    C++11 模板参数的“右值引用”是转发引用吗

    主要介绍了C++11 模板参数的“右值引用”是转发引用吗,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

    VC10中的C++0x特性

    这一系列文章来自Visual C++ Team Blog,介绍Microsoft Visual Studio 2010 中支持的C++0x特性,目前有三部分。 Part 1:介绍了Lambdas,auto,以及 static_assert; Part 2:介绍了右值引用(Rvalue References)...

    c++的右值引用具体用法

    在c++11中,支持右值引用,右值引用的用处之一是移动语义,对象的资源所有权发生转移,在c++11之前,移动语义的缺失是c++饱受诟病的问题之一. 什么是左值?什么是右值? 凡有名者,皆为左值.左值对应变量的存储位置...

    31_c++中的左值引用与右值引用1

    左值:可以取地址的,有名字的,临时的右值:不能取地址的,没有名字的,临时的举个栗: int a = b + c ,a 就是左值,其变量名为 a ,通过 &a 可

    VC10中的C++0x特性.pdf

    这一系列文章介绍Microsoft Visual Studio 2010 中支持的C++ 0x特性。 Part 1 :介绍了Lambdas, 赋予新意义的auto,以及 static_assert; Part 2( 1 , 2 ):介绍了右值引用(Rvalue References); Part 3:介绍了...

    c++11 std::move() 的使用

    std::move函数可以以非常简单的方式将左值引用转换为右值引用。(左值、左值引用、右值、右值引用 参见:http://www.cnblogs.com/SZxiaochun/p/8017475.html) 通过std::move,可以避免不必要的拷贝操作。 std::move...

    C++11的右值引用的具体使用

    C++11 引入了 std::move 语义、右值引用、移动构造和完美转发这些特性。由于这部分篇幅比较长,分为3篇来进行阐述。 在了解这些特性之前,我们先来引入一些问题。 一、问题导入 函数返回值是传值的时候发生几次...

    C++标准之(ravalue reference) 右值引用介绍

    1、右值引用引入的背景 临时对象的产生和拷贝所带来的效率折损,一直是C++所为人诟病的问题。但是C++标准允许编译器对于临时对象的产生具有完全的自由度,从而发展出了CopyElision、RVO(包括NRVO)等编译器优化技术...

Global site tag (gtag.js) - Google Analytics