`
阿尔萨斯
  • 浏览: 4170917 次
社区版块
存档分类
最新评论

第4.4节 换元积分法

 
阅读更多
<style type="text/css"> <!-- td p {margin-bottom:0cm} p {margin-bottom:0.21cm} --> </style>

4.4INTEGRATION BY CHANGE OF VARIABLES

Wehaveseen that the sum, constant, and power rules for differentiation canbe turned around to give the sum, constant, and power ruler forintegration. In this section we shall show how to make use of theChain Rule for differentiation in problems of integration. The ChainRule will lead to the important method of integration by change ofvariables. The basic idea is to try to simplify the function to beintegrated by changing from one independent variable to another.

IfF is an antiderivative of f and we take u as the independentvariable, then ∫f(u)du is a family of functions of u,

f(u)du = F(u) + C.

Butif we take x as the independent variable and introduce u as adependent variable u=g(x), then du and ∫ f(u) du mean thefollowing:

du= g' (x) dx, ∫ f(u)du = ∫ f (g(x)) g'(x)dx = H(x) +C.

Thenotation ∫ f(u)du always stands for a family of functions of theindependent variable, which in some cases is another variable such asx. The next theorem can be used as follows. To integrate a givenfunction of x, properly choose a new variable u= g(x) and integrate anew function with respect to u.

DEFINITION

LetI and J be intervals. We say that a function g maps J into I if forevery

Pointxin J, g(x) is defined and belongs to I (Figure 4.4.1).

Figure4.4.1

THEOREM1 ( Indefinite Integration by Change of Variables)

SupposeI and J are open intervals, f has domain I, g maps J into I, and g isdifferentiable on J.Assume that when we take u as the independentvariable,

Thenwhen x is the independent variable and u = g(x),

PROOFlet H(x) = F(g(x)). For any x in J, the derivatives g' (x) and F'(g(x))= f(g(x))

exist.Therefore by the Chain Rule,

Itfollows that

Sowhen u = g(x), we have

Theorem1 gives another proof of the general power rule

Whereu is given as a function of the independent variable x, from thesimpler power rule

Wherex is the independent variable.

EXAMPLE1 Find

EXAMPLE2 Find

Letu= 1 + 1/x, Then du =1/x²dx and thus

So

Ina simple problem such as this example, we can save writing by usingthe term 1+1/x instead of introducing a new letter u,

Inexamples such as the above one, the trick is to find a new variable usuch that the expression becomes simpler when change variables. Thisusually must be done by an “educated” trial and error process.

Onemust be careful to express dx in terms of du before integrating withrespect to u.

EXAMPLE3 Find ∫(1+5x)² dx, Let u = 1+5x. For emphasis weshall do it correctly and incorrectly.

Correct:du =5dx, dx = ___ du,

Incorrect:

Incorrect:

EXAMPLE4 Find

Wetryto express the integral in terms of u.

Sinceu=2x²,x²=2u.Therefore

Wenext describe the method of definite integration by change ofvariables. In a definite integral

Itis always understood that x is the independent variable and we areintegrating between the limits x= a and x=b. Thus when change to anew independent variable u, we must also change the limits ofintegration. The theorem below will show that if u = c when x=a andu=d when x=b, then c and d will be the new limits of integration.

THEOREM2 (Definite Integration by Change of Variables)

SupposeI and J are open intervals, f is continuous and has an antiderivativeon 1, g has a continuous derivative on J, and g maps J into I. Thenfor any two points a and b in J,

PROOFLet F be an antiderivative of f. Then by Theorem 1, H(x) = F(g(x)) isan antiderivative of h(x)= f(g(x))g'(x). Since f,g, and g' arecontinuous, h is continuous on J. Then by the Fundamental Theorem ofCalculus,

EXAMPLE5 Find the area under the line y= 1+3x from x = 0 to x = 1.This can be done either with or without a change of variables.

Withoutchange of variable: ∫ (1+3x) dx = x +3x²/2 + C, so

Withchange of variable: Let u = 1+ 3x. Then du=3dx, dx= ___ du.

Whenx = 0, u= 1+3·0 = 1. When x =1, u =1+3·1 =4.

EXAMPLE5 shows us that ____ (1+3x) dx = ___ (u/3) du; that is, theareas shown in Figure 4.4.2 are the same.

Figure4.4.2

Figure4.4.3

EXAMPLE6 Find the area under the curve y=2x/ (x²-3)² from x=2 to x=3

(Figure4.3.3).

Letu= x² -3. Then du = 2x dx. At x=2, u= 2² -3 =1. At x=3,

u= 3² -3 =6. Then

EXAMPLE7 Find ________ xdx, the function _____ x as given is onlydefined on the closed interval [-1,1]. In order to use Theorem2, weextend it to the open interval J=(-∞,∞)by

Letu=1x².Then du= 2xdx, dx=du/2x.At x=0, u=1. At x=1,u=0. Therefore

Wesee in Figure 4.4.4 that as x increases from 0 to 1, u decreases from1 to 0, so the limits become reversed. The areas shown in Figure4.4.5 are equal.

Figure4.4.4

Figure4.4.5

Wecanuse integration by change of variables to derive the formula for thearea of a circle, A = πr², where r is the radius. It is easier towork with a semicircle because the semicircle of radius r is just theregion under the curve

Tostart with we need to give a rigorous definition of π. Bydefinition, π is the area of a unit circle. Thus π is twice thearea of the unit semicircle, which means:

DEFINITION

Thearea of a semicircle of radius r is the definite integral

Toevaluate this integral we let x=ru. Then dx=r du. When x= ____ r, u =___ 1.

Thus

Thereforethe semicircle has area π r²/2 and the circle area π r² (Figure4.4.6).

EXAMPLE8 Find

Letu= x -x3. Then du =(1 -3x²) dx. When x=0, u=0 -03 =0.

Whenx =1, u =1 -13 =0. Then

Asx goes from 0 to 1, u starts at 0, increases for a time, then dropsback to 0

(Figure4.4.7).

<style type="text/css"> <!-- td p {margin-bottom:0cm} p {margin-bottom:0.21cm} --> </style>

Figure4.4.6

Figure4.4.7

Wedo not know how to find the indefinite integrals in this example.Nevertheless the answer is 0 because on changing variables bothlimits of integration become the same. Using the Addition Property,we can also see that, for instance,

PROBLEMSFOR SECTION 4.4

InProblems 1-90, evaluate the integral.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

InProblems 91-108, evaluate the definite integral.

91

93

95

97

99

101

103

105______106______

107_______108______

109Find the area of the region below the curve y=1/(10-3x)fromx=1and x=2.

110Find the area of the region under one arch of the curve y=sin xcosx.

111Find the area of the region under one arch of the curve y=cos(3x).

112Find the area of the region below the curve y=4x______betweenx=0and x=2

113Find the area below the curve y=(1+7x)²/3betweenx=0and x=1

114Find the area below the curve y=x/(x²+1)between x=0and x=3.

115Evaluate: ________dx

116Evaluate: ___2x_______dx

117let f and g have continuous derivatives and evaluate f ' (g(x))g'(x)dx.

118a real function fissaid to be even if f(x) =f(-x)forall x.Show that if fisa continuous even function, then __f(x)dx=__f(x) dx.

119an odd function is a real function g such that g(-x)= -g(x) forall x.Prove that for a continuous odd function g,__g(x)dx=0.


分享到:
评论

相关推荐

    最新04 第四节 定积分的换元法积分法和分部积分法.doc

    最新04 第四节 定积分的换元法积分法和分部积分法.doc

    5-3 定积分的换元积分法与分部积分法2

    第三节定积分的换元积分法与分部积分法第五章二、典型例题一、主要内容三、同步练习四、同步练习解答一、主要内容(一) 定积分的换元积分法引例求椭圆解(方法1)令围成

    高等数学课件-第五章、第四节 换元法、分部积分法.ppt

    高等数学课件

    数学算法原书光盘

    第4章特殊函数 1.г函数、贝塔函数、阶乘及二项式系数 2.不完全г函数、误差函数 3.不完全贝塔函数 4.零阶、一阶和任意整数阶的第一、二类贝赛函数 5.零阶、一阶和任意整数阶的第一、二类变形贝赛函数 6.分数阶第一...

    matlab数值计算程序[PDF]

    第四章 方程求根..........................................................40 4.1. 二分法...................................................................................................................

    Matlab基础及应用教程

    第 1 章 MATLAB简介........................................1 1.1 MATLAB 的发展沿革...........................1 1.2 MATLAB 的特点及应用领域...............2 1.3 MATLAB 系统及工具箱..........................

    kuangbin acm模板超级好用

    2.10 高斯消元法求方程组的解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.10.1 一类开关问题,对 2 取模的 01 方程组 . . . . . . . . . . . . . . . . . . . 37 2.10.2 解同余方程组 . . ....

    802.11无线网络权威指南(第二版全_非扫描).pdf

    华为三康机密,未经许可不得扩散 第4 页, 共508 页 3.3.4 Spectralink 语音优先性...................................................................... 56 3.3.5 帧的分段与重组.................................

    人大版微积分第四章函数的极值及其求法.ppt

    人大版微积分第四章函数的极值及其求法.ppt

    MATLAB有限元与谱元法导论 英文原版第2版

    第2章是对第1章内容的深化和扩展,介绍非稳态问题有限元方程的时程积分法和有限元法在梁弯曲、屈曲中的应用;第3章叙述一维问题中谱元法的基本理论和方法,引入正交多项式和谱插值概念,介绍Lagrange,Chebyshev和...

    Matlab数值计算程序.pdf

    浙 江 工 业 大 学算 法 设 ... Romberg加速法..............................................................................................................142.4. 三点Gauss公式.............................

    Python 科学计算

    第 4 章 SymPy——符号运算好帮手 .... 115 4.1 从例子开始..................................115 4.1.1 封面上的经典公式....................115 4.1.2 球体体积...................................117 4.2 数学...

    4-3 不定积分的分部积分法2

    第三节第4章二、典型例题一、主要内容三、同步练习四、同步练习解答一、主要内容由导数公式积分得—— 分部积分公式公式的作用:改变被积函数(一) 分部积分公式(二)

    高等数学常用微积分公式

    十一、第二换元积分法中的三角换元公式 十二、重要公式 十三、下列常用等价无穷小关系 十四、三角函数公式 1.两角和公式 2.二倍角公式 3.半角公式 4.和差化积公式 5.积化和差公式 6.万能公式 7.平方关系 8.倒数关系 ...

    高等数学常用微积分公式(可编辑,word版)

    十一、第二换元积分法中的三角换元公式 十二、重要公式 十三、下列常用等价无穷小关系 十四、三角函数公式 1.两角和公式 2.二倍角公式 3.半角公式 4.和差化积公式 5.积化和差公式 6.万能公式 7.平方关系 8.倒数关系 ...

    Matlab数值积分法汇总,数值积分法MATLAB,C,C++

    4IntSimpson 用辛普森系列公式求积分NewtonCotes 用牛顿-科茨系列公式求积分IntGauss 用高斯公式求积分IntGaussLada 用高斯拉道公式求积分IntGaussLobato 用高斯—洛巴托公式求积分IntSample 用三次样条插值求积分...

    高等数学(第四章不定积分)

    1、 不定积分的概念; 2、 不定积分的性质及基本公式; 3、 换元积分法与分部积分法。

    ACM经典代码_相当不错的资料.pdf

    4. 第k 元素.. 116 5. 幻方构造.. 116 6. 模式匹配(kmp) .. 118 7. 逆序对数.. 118 8. 字符串最小表示 119 9. 最长公共单调子序列 ...... 119 10. 最长子序列 ...... 120 11. 最大子串匹配 .. 121 12. 最大子段和 .....

Global site tag (gtag.js) - Google Analytics